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A 2D electromagnetic version of the direct implicit PIC algorithm has been developed and 
implemented in the new code AVANTI. The code has been tested on electron beam lilamen- 
tation and magnetic reconnection problems and has fulfilled most of the promise of implicit 
PIC. It runs stably with an arbitrarily large time step and IS quite robust with respect to large 
particle fluctuations that result when plasmas are represented with small numbers of particles 
per cell N,. Several numerical obstacles were overcome during the development of the 
AVANTI. A method of determining the implicit susceptibility x is described which allows the 
code to avoid a nonlinear instability associated with small N,. We find a form of “simplified 
differencmg” that provides a very robust algorithm without need for explicit smoothing. 
Another hurdle is the solution of the EM field equations. If the colhsionless skin depth is not 
well resolved in high density regions, the terms containing the tensor x dominate the E field 
equation and strongly couple the components. This strong coupling is handled by 
simultaneous solution of these equations-generalizing to simultaneous splitting in 2D. In 
regions where the skin depth is well resolved, terms associated with purely electromagnetic 
waves dominate but do not lit symmetrically into the simultaneous splitting scheme. Introduc- 
ing the electrostatic potential, the troublesome asymmetric electrostatic part of E cancels but 
requires a fourth equation for 4 to be solved simultaneously along with the three E com- 
ponents. Finally, extension and generalization of the conventional explicit PIG divergence 
correction step, necessary to maintain Gauss’ law, is needed. By using a more complex form 
for the correction factor, one that incorporates some implicit shielding, the correction step 
provides an opportunity to control or prevent spuriously large implicit currents from moving 
across strong magnetic fields and across steep density gradients from vacuum regions. ‘d’ 1987 
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I. ZNTRODUCTION 

The success of the particle-in-cell (PIG) method is due to the ability of this 
method to mimic true plasma behavior. With the PIC model a plasma is represen- 
ted, albeit approximately, the same way a real plasma appears: as a collection of 
particles immersed in and evolving with an electromagnetic field. The time 
evolution of the PIC plasma is accomplished via a large number of steps in each of 
which all particles and field components are advanced a finite time step. ith 
explicit methods, there exist stability constraints on the size of the time step As a 
consequence simulations with PIC algorithms frequently are limited to rather 
modest simulated physical time using present day computers. Small ion- to elec- 
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tron-mass ratios as well as other tricks, such as analytically eliminating fast time 
scales from the model Cl], have been employed to reduce the ratio of computer to 
physics time. Still, a recurring weakness of the PIC method is that the scope of the 
study is frequently determined by the computing resource. 

Many problems needing the detailed resolution of the PIC method for some part 
of the plasma behavior can take advantage of the frequent situation that not all 
plasma behavior needs to be followed with the same thoroughness. Reduced or 
hybrid models have been employed to greatly extend the utility of the basic PIV 
concept: the plasma phenomena of interest are fully represented by PIC while 
phenomena several orders of magnitude faster in time are represented by algebraic 
equations intended to model the slow time-scale behavior. A typical use of such 
models is to study ion finite-gyroradius effects in a plasma in which the electron 
behavior can be assumed to remain in equilibrium about comparatively slow mov- 
ing ions [2]. The electrons in this case can be represented by fluid equations which 
may include high frequency effects through the inclusion of judiciously chosen 
transport coefficients. The major difficulty with such models is that the domain of 
validity is too confining: it is not easy to tell how large the discrepancy between the 
hybrid and “real” model is, as the parameters invariably stretch the limits of the 
model-and separate models must be constructed in domains in which different 
physics can be expected to dominate. 

Recently, significant advances have been made in relaxing some of these dif- 
ficulties. As with most improvements, the new ingredient, implicit time differencing, 
has properties well known in other applications such as (magneto) hydrodynamics 
or even hybrid methods for the fluid/field equations. The essence of an implicit PIC 
algorithm is to use part of the yet-to-be-determined fields to advance the par- 
ticle/fields to the next level so that stability with a large time step can be main- 
tained. The big impediment to the adaptation of implicit methods to PIC techni- 
ques has been the perceived difficulty of solving simultaneously not only the field 
equations but also two dynamical equations for each particle for each time step. 

Two solutions to this problem have recently been developed. The first approach, 
the moment method, makes use of the fluid equations to predict source terms and 
consequently fields necessary for stable integration [3-S]. Greatly simplifying, the 
moment approach starts with the fields and source terms at one time level and 
implicitly advances them through a large time step to a new level using fluid or 
moment equations. The advanced field is used for the time-advanced portion of the 
field needed for numerical stability with large time steps. The particles are now 
advanced to the new time level using the advanced fields obtained from the moment 
equation prediction. New source terms can be calculated from the new particle 
positions and velocities. As the advanced fields are not consistent with these new 
kinetically obtained positions and velocities, an iteration over the particle can be set 
up but, in practice, has not proven necessary. As the moment equations used for the 
first part of the time step are made more and more complete, the approximation 
becomes better. Current research is aimed at optimally choosing the order and 
closure of the moment equations. 
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The other approach, and the subject of this paper, is the direct method [9-131. 
The basic idea with this approach is to use an intermediate time level for both par- 
ticle positions and velocities which are obtained by using all of the particle 
dynamical equations except that due to the fields at the advanced time level. 
exploiting the definitions of plasma charge and current densities as sums over the 
particle shape factor, the advanced plasma source terms can be expressed in pieces. 
One part is obtained by summing over the intermediate level and a second con- 
tribution is expressed as an operator on the advanced field. These expressions can 
now be used directly in the field solution. Once the advanced fields are obtained, 
the last piece of the particle advance from the intermediate level to the new 
positions and velocities can be completed. As with the moment method an incon- 
sistency can exist, depending on the care taken in the preparation of operators mul- 
tiplying the advanced fields, between these new fields and the source terms that now 
could be obtained from the new positions and velocities. An iteration could be 
employed over this final correction of particle coordinates but this has not proven 
to be necessary for this direct method either. 

An important advantage of this scheme over the moment method is, we feel, that 
at no point is it necessary to introduce any auxiliary equations-we always work 
directly with the particle or field equations. As a consequence this method avoids 
any question of momentum-moment closure. 

A variant of the direct implicit scheme has been developed by Barnes an 
coworkers which uses a grid-based rather than a particle-based scheme for this con- 
tribution from the advanced field and so eliminates the need and also the possibility 
of iteration for this final push [ 121. We feel this assumption introduces unnecessary 
dissipation into the algorithm in certain regimes. 

The plan of the paper is to present the direct implicit PIC model in the next sec- 
tion. We follow with Section III which describes implicit particle integration an 
includes several subsections which give the serious reader more detailed derivations 
of the essential concepts. In Section IV we present the numerical implementation of 
the field solution. Implementation details, now used in the code AVANTI, include 
the representation of quantities on an interleaved mesh, the simultaneous splitting 
technique, and the methods used to provide relatively general boundary ~on~it~o~~. 
In Section V we present applications of this method to an electron beam filamen- 
tation problem which has been run in various parameter regimes, and to magnetic 
reconnection. 

II. THE EM IMPLICIT MODEL 

The electromagnetic model proposed in [14, 151 can be expressed as foBows: 
with the D1 difference scheme [lo, 121 the particle description is given by 

vn+ 1/2 = v,- 1/2 + ~tC%, + (v,, l/2 + vn- I/J/~ x qB,(x,)lmcl $aa) 
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X,+1 = X” + Atvn + l/2 (lb) 

iiin=&in-l +@~+l(xrz+lYm)~ (lc) 

where the quantities x, v, and a are considered to have the index i for the ith par- 
ticle and subscript IZ denotes time step. The field equations are finite differenced in 
time and can be expressed by [lS] 

E n+1-E,=cAtVxB,+1,2-471AtJ,+1,?. 

B n+ l/2 -B n-112 = -cAtV x E, 

B n+l -B n+ l/2 = -$cAtVxE,,+, 

&z=&(E,+l+E,-1) 

(Id) 

(14 

(ff) 

(lg) 

and the fields are coupled to the particles by 

P n+l=~qs~S(Xj-x~+l) 

J n+l,2=;4.2 v,+1/2fCs(xj-X,)+S(Xj-XX,+1)], 
s I 

(lh) 

(Ii) 

where the index j denotes the j, k grid location. S is the shape factor that relates 
each particle to the spatial grid located at position Xj. 

Reference [lo] discusses D, time-differencing in the context of the particle 
equations of motion and desirable properties of (Id)-( lg) are discussed in [ 151. 
Here we note that the simpler choice E, = E, + 1 provides stability but less accuracy 
and more damping of the low frequences we wish to retain. 

III. IMPLICIT PARTICLE INTEGRATION 

In part (a) of this section, we discuss the idealized split of the particle advance 
into parts followed by a description of what we actually do in subsections (b)-(e). 
The deviations from the ideal are due to a linearization of the particle step and 
choices made in setting up the associated differencing schemes. A discussion of these 
decisions is given in Section VI following the examples. 

a. Overview of the Direct Implicit Particle Advance 

The particle integration scheme is implemented in two conceptual steps. First we 
advance the particles to the N level using everything but the advanced E field. This 
step is called the PREPUSH. For each particle we use 

f ni- l/2 = v, - 1/2 + fatal% - 1 + (v, + 1/2 + v, - 1j2) x sBti(xnYmcl Pa) 

5 n+l =~,,+Ati;,+~,~ (2b) 
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followed by the accumulation of some particle derived source terms at this - level. 
The - level source terms are constructed such that the advanced source terms can 
be obtained from the - source terms when the new I3 field is known. The 
expressions we use are 

Pn+l(Xj)=~,+l(Xj)-V.X.E,+l Pa) 

AtJ .+1/2(Xj)=AtJ n+1/2(Xj)+X.E,+l-cAtVX5.E,+l, (Jb) 

where p and 3 result from summations similar to Eqs. (lh) and (li) using - level 
quantities and x and 5 are tensors whose origin and precise form will be derived in 
subsequent subsections. These expressions are now substituted into the D,-scheme 
Maxwell’s equations (Id)-( lg) so that we may solve for the advanced fields. T 
solution of these equations becomes an independent numerical task-much the 
same as an explicit PIC code-given these particle-derived source terms. Our field 
solution technique is described in Section IV. Assuming the advanced fields have 
been calculated, the particle advance can now be completed with these new fields. 
The final advance or FINALPUSH is given, for each particle, by 

~~=~AtCqlmE,+,(x,+,)+~vxqB,(x,)lmcI t44 

xn+1= 2 n+l +At6v (4b) 

vn + l/2 = in + l/2 + &I (4c) 

a,=~Cii,-,+q/mE,+,(x,+,)l. (4d) 

b. Accumulation of N Level Particle Source Terms 

In this section we discuss the procedure for deriving the - level particle source 
terms. The Boris algorithm for the velocity advance given in Eq. (la) can be written 
Cl& 171 

V n+1,2=R.~,~1,2+$(I+R).anAt, Gal 

where I is the identity and R is the rotation tensor given by 

R(x,) = [ (1 - !32)I - 26 x I + 206]/( 1 + 0”) (5b) 

0 = qB,(x,) At/2mc. (SC) 

Writing a similar expression for Eq. (2a), we note that the expression for the dif- 
ference 6x between x,+ 1 ans G,+ i is 

~x=x,+,-jT,+l=SvAt 

=At2(q,/4mi)(I+Rj(x,)) ~E,+l(x,+lb ($3 

We now accumulate a charge and two current densities for each species by sum- 
ming over particles: 
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P ,,,+I(xj)=q,Cs(xj-~n+l) (74 

P’b) 

3 s,n + l/2txj) = 4s 1 T n+1/2 tCs(xj-x*)+ s(xj-jzn+l)l 

=4 ‘A+ l/2txj) + $4, C Tn+ 1/2S(Xj-X,). (7c) 

The source terms needed for the field solution are obtained by summing over 
species for 

(84 

J n + 1/2Cxj) = C Js,n + 1/2txj) WI 

and the two dimensionless tensors 

X(X,) = C 2fkh P&,n+ I(Xj)(I + R,(Xj)) (8~) 

S(Xj) = C iAt2qs/ms J;fn+ 1/2(Xj)lC X (1 f Rs(Xj)) W) 

are computed on the spatial mesh.’ 
Let us compare the contributions of the x and [ terms in (3b). For 8,s 1, x is of 

order +(o,, At)‘, and i is of order t~fi,/c, where 5, is a mean electron drift. In a 
region where x and l are roughly uniform, and E, + I varies sinusoidally in space, 
the contributions to AtJ,, 1,2 are xE,, 1 and -(i/2) k x (V, At x xE, + 1), respec- 
tively. Then, for example, the [ current can be one-quarter the x current if 
V, At/Ax = 1 and the wavelength is 6Ax. Thus the { contribution is not at all 
negligible. Further, it differs in both direction and phase, and so can alter the 
qualitative nature of the current. In order for energy to be conserved, a related term 
must be retained in a linearized particle code [ 181. 

R, has the same form for the rotation tensor given by Eq. (5b) except it is now 
evaluated on the mesh for each species. This approximation (discussed in the next 
subsection) is 

f[I + R,(Xj)] = [I + 8,8,- 8, X I]/( 1 + 03) 

O,=q,B(Xl) At/2m,c. 

Pa) 

Pb) 

1 It is J+ rather than in+ 1,z that arises in the derivation in Section IILc, and that is what we first 
implemented. It is more economical to use j n+1,2 in (8d); we note no difference in performance in our 
test problems. 
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Given the advanced E field, the total charge and current densities, pn + 1 and J, t ,i2, 
can be recovered using Eqs. (3) with (SC) and (gd). 

c. Derivation of the Implicit Susceptibilities x and 4 

Approximations have been made in obtaining the expressions Eqs. (3) for these 
advanced source terms. We now derive expressions for the susceptibilities, starting 
with x. We keep all terms linear in the fields. Expanding the shape factor S in a 
Taylor series about the known position sn+ 1 gives 

P n+l=CqeC Cs(xj-~n+l)+~x~v~S(xj-~~+l)l~ 

s I 

where the gradient operates on the particle coordnate ii,,, 1. Recall from Eq. (6) 
that 6x is the correction needed to obtain the new particle position, 
X n+1= % n + 1 + 6x. Using V,S(x - 2, + 1) = -VS(x - 2, + 1), 

Pn+l=/?n+1-[v.C4sC~xS(x-~,*+l)l.=.j 
s I 

=Pn+1- wp1,4q 

with 

where we have substituted the expression for 6x from Eq. (6). Expressing 
JL+l(k+l) as 

IAxl CE,+l,j,S(Xj,-ii,+l). ., J 

results in a complicated procedure known as strict differencing. Another variant 
conserves linear momentum exactly [ 11, 151. 

The form we use in this work is an extension of the simpliJied dijjferencing of [9, 
Section 3.41. Our results suggest that the simpler representation also has better 
stability properties for large At ([ 191, and Section VI). The following is an heuristic 
motivation: 

First, we consider how to retain the property of Eq. (11) that the term - 
contributes no net charge to the system. The gradient operating on S gives, for 
bilinear shape factors, differences of lower-order weighting functions. As a result, 
Eq. (llb) can be written in the form 

P -p,- 112.k _ P,.k+ I/2 - P,,kp 112 
Pn+l=Dn+l- J+112TkAx 

AL' . 

581/72:1-9 
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For a volume whose surface lies outside the system of particles, it is clear that the 
total charges, obtained by summation of pn + i and of Fn + I over the grid, are iden- 
tical. Details can be found in [9, Section 4.11. We retain this property by using 
Eq. (llf) in the code, but use a different expression for the components of P based 
on experimentation with an electrostatic code [19]. 

Replacing x, by gn+ i in the magnetic term R in Eq. (lld), P(x) becomes a con- 
volution of S and p, + I E, 

P = At214 c qslm, ds,, + 1 (xICI+W~)I.E,+I(X) 

=x.&+1, (12) 

where argument x of all quantities is a grid quantity not a particle coordinate. The 
precise location of x on the interleaved mesh depends on the components of P and 
E that are being coupled together. The code’s representation of the components of 
(x. E), with x(x) given by Eq. (8c), is detailed in Appendix A. 

In the same spirit we linearize the J n + iI2 given by Eq. (li) using the same expan- 
sion for S. Using Eqs. (li) and (7~) and i, + ,,* + 6v for v, + ,,*, we obtain, to linear 
order in 6x, 

J -3 n+ l/2 - ?l+1/2+C 4s C jsv +Cs(xj-x,) + S(Xj-in+ I)] 
s I 

+7 n+1/2 ~x~VzS(Xj-an+~)])~ (13) 

In order to ensure that V .6J At + 6p = 0 exactly in the difference equations, we 
rearrange this as 

J n+ l/2 
=J 

n+1,2+CqsC6VS(Xj-~,+l) 
J I 

+iC4sC Cvrz+I/2~x+~x i~+~~21~v~s~xj~~~+~~1 (15) 

3 i 

which can be expressed as 

J -3 nt1/2 - n+1/2+CqsC~VS(Xj-~n+1) 

(16) 

This expression can be accumulated with the use of an array J+, given in Eq. (7b), 
as 

J -3 n+ l/2 - n+1,2+~BV-+vX(J+ x6x) (17) 
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summed over species” Using the definition of 6x in Eq. (6) this expression is given 
by Eq. (3b) using Eqs. (8b) and (8d). A heuristic derivation of (17) in terms of 
Fig. 1 is given in [15]. 

d. The FINALPUSH 

The particle push (FINALPUSH) using the new E field is given by Eqs. ( 
lirst approximation for 6v is obtained using i, + i as an approximation to x,, + 1 
the argument of E, + i. In place of Eqs. (4) we use, 

6~ = Pt [q/m& + l(+L + 1) + 6~ x qFz(x,)l~~l (Isa) 

X ??+I= P .+,+Ath 1($8bl 

V n+1/.2=Kz+1/2+~V 118c) 

a,=gj,-, +ql~E,+,(%+,)l. (18d) 

The obvious difference between these equations and Eqs. (4) is the use of %,,+ 1 
for x,+~. VEn+1 were known precisely, we could easily iterate so that the new 
field for each particle is actually evaluated at the final particle position as the model 

x 

/ 

n+l 

” n++“” 
/I 

JiTl+ 1 
, 

_’ 
, 

, ’ 
_*’ 

xn J ,+g 

+ 

, 

r ‘- 

‘, ’ 

% PdV 

,xIl+1 

FIG. 1. Geometrx interpretation of the terms m J,, 1j2 = i,+ l,z + 6J, Eq. (17). While J,,, i,z 
corresponds to moving the particle directly from x, to x, + 1, it can be regarded as the sum of 3 motions: 
(1) motion from x, to t,,,, giving J~“~p:,2, (2) then motion from t,,, to x,+~. giving p 6v plus (3) a 
circulation term -jV x (J x 6x) to cancel the effect of the “detour” to f,- 1. This is not needed to get 
pn+, but does affect B and E,. (from [14, 151.) 
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calls for in Eqs. (1) by cycling through Eqs. (4at(4b) until x, + 1 converges. In fact, 
the equation providing E, + r is based on the same linearization as (18a); moreover, 
we deliberately chose spatial differencing schemes which maximize robustness 
because these choices considerably expand the utility of codes based 
on this model. The overall performance and consistency of the model depend on 
this and other choices which depend on the details of the connection between 
particles and the self-consistent fields. These and other issues are discussed in 
Section VI following the examples. 

e. Particle I/O Management and Diagnostics 

As described above, this scheme may appear to need two I/O passes through the 
particles. One of the passes can be eliminated by combining the FINALPUSH of 
step n - 1 with the PREPUSH for step n for each buffer of particles. Both pieces of 
the particle push can now be carried out at the same time-necessitating only one 
particle buffering cycle for each time step. 

A minor inconvenience is that all particle quantities are at the - level, except for 
a brief period in the middle of the reordered parts of the particle push. These quan- 
tities are, conveniently, consistent for diagnostic purposes because the particle and 
current densities are also only computed at the - level-all plasma source 
diagnostics of the simulation are presently representations obtained from - level 
quantities. 

Diagnostics from - level particle sums show the roughness associated with par- 
ticle excursions due to the large time step in the PREPUSH which is not yet 
mitigated by the FINALPUSH correction. The plasma source terms can also be 
reconstructed from the advanced fields after they have been calculated [20]. 
V.En+I and Jn+1j2 from Eq. (Id) are in fact the source terms corresponding to the 
fields with which the particles are advanced, and which are integrated forward in 
the Maxwell equations. Other reasons for using these source terms are differences 
between them and Eqs. (3); i.e., consistency issues discussed in Section VI. 

IV. THE IMPLICIT FIEND EQUATIONS 

The field equations are obtained by substituting the expressions for pn+ 1 and 
J n + 1,2 into Eqs. (Id)-( lg). Rearranging, we can replace Eq. (Id) with 

E - $%t2[V2E - V(V . E)] + 47$x. E - cAtV x 5. E) = Q 

Q’=E,-4zAt~+cAtVxB,~1,2-~c2At2VxVxE,~,, 
(19) 

where the E without subscript is E, + 1, and, for the moment, Q = Q’. This equation 
for E governs the time evolution of both the electrostatic and inductive parts of the 
electric field. 
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The solution of Eq. (19) with Q = Q’ does not satisfy 

our best statement of the Gauss law V. E, + 1 = 4np,, + , . Taking the divergence of 
(19) shows that E,, 1 satisfies instead V. (I + 47g). E = V. 
V.Q’#47@,,+1, due both to the method of forming 3 by (‘7~) and to incomplete 
convergence of the FINALPUSH at earlier time levels. This nonconservative aspect 
of the area-weighted J was noted long ago [ 16,211. A solution might be to use an 
algorithm to accumulate 3 such that V . Q’ = 4zp, + 1 [22]. Two objections arise 
with this possibility: (1) more intricate operations in the “scatter” step are generally 
more expensive, and (2), as we are about to discuss, it is not clear which features of 
J need to be corrected. In any event, ignoring this issue permits VI E to drift far 
away from p, because p appears nowhere in (19). 

We consider first an adjustment to Q analogous to that used very successfully in 
several explicit EM codes [ 16, 23, 241. Since p ,I + i provides information only on the 
longitudinal part of Q, we adjust only that part of Q, by writing 

Q=Q’-V$. (21) 

The equation for $ is obtained by substitution into 

V~Q=47$. 

and is 

V’+=V.Q’-4@. (23) 

Because of the multipole structure of the right-hand side of Eq. (23), the effect of 
this adjustment to Q is quite localized in space [ 17, p. 3601 and, at least at low 
densities, is not propagated by the EM waves. 

In the context of implicit codes, this correction has been observed to cause 
trouble in two ways: Historically the first, in simulations with large values of 81, 
Barnes and his co-workers found the field E, + , corresponded to spuriously large 
currents across the magnetic field. This occurred because the correction V1c/ was 
computed without any information about the anisotropy of the mobility caused by 
B. Second, in our simulations with large and abrupt changes in density such as a 
plasma-vacuum interface, we found spuriously large fields E, + i, traced back to 
large Vt,b, in the low density region. Large values of the right-hand side of (23) in 
the high density region lead to finite “corrections” in the near vicinity, including 
regions where x is much smaller, and therefore E, + 1 can be large. 
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We find that changing the correction to the form first used by Barnes to correct 
the first difficulty, also corrects the second. Equation (21) is replaced by 

Q=Q’-(1+4q).V1,b (24) 

Substitution into Eq. (22) yields an elliptic equation for $, 

V.[I+4nx].V$=V,Q-4n@. (25) 

Note that this correction affects the solenoidal as well as irrotational part of Q. 
This is, in fact, the form that arises if we insist on a correction procedure which 
modifies only the irrotational part of the advanced field E, + i. Our early difficulties 
with spurious corrections in low density regions are drastically reduced using 
Eq. (25) as the form of the correction. 

Our understanding of the improvement, when large and abrupt density changes 
arise, is illustrated by the following gedanken: Consider the interface between a 
high-density (x $1) plasma and a “vacuum” (x < 1). Although the two forms of the 
correction are similar in magnitude in the plasma, the solution $ of Eq. (25) is 
smaller than that of Eq. (23) by about the factor x. In the vacuum, $ is the solution 
of a Poisson equation connecting continuously to $ in the plasma; Ic/ in the vacuum 
is therefore not larger than + at the plasma edge. The vacuum correction -V$ is 
therefore much smaller with the second form of correction. 

a. Representation on an Interleaved Mesh 

The reduction of the field algorithm to a finite difference procedure on a mesh 

j-1/2 j j+l/Z j+l 

FIG. 2. Interleaved mesh and location of physical quantities. 
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has several pitfalls which can erode the utility and robustness of EM codes. The 
relative positions on the mesh at which evaluations are lmade can significantly affect 
the numerical dispersion that the resulting algorithm exhibits. If evaluation points 
are chosen to be fully interleaved as shown in Fig. (2), many of these issues are 
minimized. For one, the vector properties that the divergence of a curl and the curl 
of a gradient are identically zero are exactly obtained with compact finite difference 
procedures on this mesh. Therefore, there exist exact mesh analogs to the Maxwell 
equations in integral (conservation) form. Equally important are the dispersion 
properties of the implicit algorithm. A disadvantage is that the number of mesh 
points or unknowns varies from component to component in each direction 
-adding some entropy to the initial development and requiring some caution w 
implementing boundary conditions. 

Previous implicit 1D electrostatic studies [ 19, 2.53 provide guidance for t 
optimal mesh locations for the various field and source term components. In these 
studies we found empirically choices which provided the best stability for large time 
steps. We accumulate all source terms on grid “corners” with integer indices j% 
The implicit susceptibilities as well as the components of 3 are then averaged to t 
appropriate position and the field solution is carried out on the interleaved mesh. 
The source terms are understood to be N quantities. The coefficients x and 1; are 
stored at various locations. These locations are 

j-t l/2, k 

- 
j, k + 112 

and all other coefficients are at j, k. The rational for these choices can be found in 
Appendix A. The grid definition used throughout the paper is 

All quantities in the particle pusher are considered to be at cell corners so that 
the currents and various parts of x and c must be averaged to the appropriate 
positions before the field solve and the various components of E and B are averaged 
to cell corners before the particle advance (see Appendix A). 

b. Numerical Implementation of the Field SoIution 

The solution of Eq. (19) is the most interesting part of Section IV. The other field 
equations, Eqs. (le)-(lg), can simply be evaluated point by point once E,, 1 is 
known. Equation (19) involves a coupling of E components and plasma source 
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terms that has proven difficult to solve if not properly arranged. One-dimensional 
tests, for example, quickly revealed the advantage of solving all components 
simultaneously with a linear system solver. Experimentation with Picard 
iteration-solving for each component in turn using the most recently obtained 
values for the other components- not only exhibited generally slow convergence 
but also gave additional restrictive good results with an alternating direction 

implicit (ADI) method which solves all three component equations simultaneously 
in each direction pass. As in l-D, no new constraints on At emerge and the con- 
vergence is remarkably rapid in those cases in which the x coefficients dominate. 
Even if the plasma terms are small, convergence is still more than acceptable if the 
terms with the coefficient &c2At2 are comparable to other coefficients in Eq. (19). 
For example, typical problems on a 32 by 32 mesh can easily be iterated to residue- 
to-field ratios of lop4 in less than 10 iterations, or less than 10% of the particle 
pushing cost assuming 15 particles/cell. 

However, when the coefficient +c2AtZ divided by AL = min(Ax, Ay)’ is large, 
the 

V x V x term dominates the equation and the convergence rate slows 
down-presumably because the V x V x operator does not fit symmetrically into the 
splitting scheme. We expect to simulate strongly inhomogeneous plasmas with 
vacuum regions, therefore the algorithm must effectively deal with regions in which 
4~’ At=/A; % x- re g ions in which the collisionless skin depth is well resolved. To 
make the V x V x term more tractable in these regions, we employ the traditional 
technique of splitting E into irrotational and solenoidal parts, denoted by E, and 
E,, respectively. Since E,= -V@, where @ is the electrostatic potential, we must 
self-consistently compute the n + 1 time level of four 2D scalars. Equation (19) still 
determines the total advanced electric field although it only provides three scalar 
equations. An additional equation is needed to serve as a constraint condition 
on @. 

We solve Eq. (19) and use its divergence as a constraint equation 

V.(I+4q).(EI-V@)=V.Q. Wb) 

These equations provide a set of four coupled elliptic equations which offer sym- 
metry in the terms associated with each coordinate direction. The essential feature 
of this decomposition is that we can obtain the correct cancellation of the terms 
[V2E, - V(V . E,)] analytically. 

To summarize, the strong coupling of these equations make simultaneous 
solution necessary if convergence is to be obtained for all values of (c At/A,)2 and 
2; the simple Picard iteration in Eqs. (26) will not converge rapidly when E, and 
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-V@ are comparable and x is large. We now discuss the simultaneous splitting 
procedure devised to provide the solution. 

C. Simultaneous Splitting Solution of the Field Equations 

In describing the simultaneous splitting technique it is useful to define a symbol 
representing compact, centered, finite-difference operators expressed at the Locations 
on our interleaved mesh. We define the generic symbol D, to represent a first-order 
finite difference in the h coordinate direction. For example, at the j, k location, we 
express D, as 

D.JL = C-fL(j+ $5 k) - E,,(j- 5, k)llAx 

or, at the j, k + + location, 

D,E,. = [E,(j + 1, k + $) - E,(j- 1, k + +)]/3Ax. 

At other locations some local averaging is required such as, at the j + $, k location, 

DYE,= [E&f 1, k+&)-E,.(j+ 1, k-i, 

+ E,.(j, k + 4, - E,(j, k - $)1/W. 

We will also use second-order expressions such as 

W,, = CE,,(j + t, k) - 2E,,(j + & k) + E,,(j- i, W/Ax2 

evaluated at the j + +, k position. 
Introducing iteration count with the superscript nz, we express the splitting 

iteration in terms of these operators as 

X PASS 

(1 + 47c~~~,)(E~+ ‘I2 -D,@“+ 1’2) - ;c2At2DZ,Ex”,+ ‘1’ 

+ 471(~,,E;+ “? + x,,E;+ 1’2) = Q, .’ 
+ ;c’ At’D;,E; + 47yxy D,P + 4nc At[V x 4. (E:’ - V@“l)], 

(1 + 47cxJ E’“,+ ‘I2 - +c2At2D;E;bf ‘I2 

+ 47c[x&E;“,+ “‘- D,P’+ 1’2) + ~~;E:‘lr+ 1’2] = Q J 
+ ic’At2D;E;, + (1-t 47~x,>) D,@” + 4nc At[V x 6. (Ey - Wm)li 

(1 + 471~~~) E;l_+ ‘I2 - +c2At2D;E;+ 1/Z + 47t(xzxE’“,+ 1/Z + xzr I?;,+ 1’2) = Q, 

+ +c2 At’D;E; + 47cc dt[V x 5. (ET - VCD~)]~ 

D,(l + 4n~,.~)(E’“,+ “’ - D,@“+ “‘) + ~TcD,(~.~J~;+ I” + xxzEE+ “‘) 

= 4nJ - Dy( 1-t 47yJE; - DyQm) - 47cD,(~~xEr;Z + xyZE;) 

+ WD,X.&$~ + D,x.wD,@“Y. 
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Y PASS 

(1+47c~xx)E~+1-~c2At2D~E~+1+4~[~.I;V(E~+1-D,~m+1)+~x~E~+1]=Qx 

+ +c’ At2D; E’“,+ u2 + (1 -I- 47c~~.~) D, @” + 1’2 

+4ncAt[Vx~~(E~+1’2-V@“+1’2)], @$a) 

(1 +~Tc~,)(E;+‘-D,cB~+‘)-~~~ At2D;E;+’ +4~(~~~Em,+lt~~=E~+l)=Q, 

+ ic’ At2D2 E;’ Ii2 + 47q,,D,@” + II2 x 

+~TccA~[VX~.(E~+~‘~-V@~+~‘~)]~ Wb) 

(1 + 47qzz) E’“+ ’ - $c2At2Dj Ez + ’ + 471(x,, Eg+ ’ + xzy E;,+ ‘) = Q, 

++c2 At2D;E’=+1’2 +4nc At[V xc. (E;“+ 1’2-V@m+1’2)]_ (28~) 

D,(l +~~x~~)(E~+~-D~~~+~)+~~~D~(x~.~E;I+~+x~”~E~+~) 

= 47cb - D,. 1 + 47cxyv)( E; - D, CT) - 4~cD&~ E;.+ 1’2 + xxz E; + 1’2) 

+4~(D,~,,D,~“+1’2+D,~,D,~m+1’2). (28d) 

Each of these equations is expressed on the interleaved mesh at the location of the 
component of the electric field. The four equations under XPASS are solved 
simultaneously, as are the four equations under Y PASS, by a banded linear matrix 
solution. It is essential that the vector E, not develop an irrotational part because 
we have analytically assumed that V. E, = 0. Although we can show that, at con- 
vergence, V . E, = 0 is required2 by Eqs. (26), this constraint is a vector fieZd 
property which is not built into each AD1 pass. Each AD1 pass imposes the con- 
straint only on a mixture of iteration levels; the condition on the divergence of E, is 
not satislied at the end of each pass. 

To ensure that any developing irrotational part of E, be carried by -V@, the E, 
components are divergence-cleaned immediately after the X PASS and the Y PASS 
by a formal vector decomposition. The divergence clean is accomplished by first 
forming the total lield vector E = E, - V@ using the latest values and solving the 
Poisson equation 

V2@= -V.E (29a) 

for the adjusted @. The new E, is then given by 

E,=E+V@. (29b) 

* That V E, = 0 is required by Eqs. (26) can be seen by taking the divergence of Eq. (26a) and sub- 
tracting Eq. (26b). The result is V . VZE, = V”(V E,) = 0 which, for Dirichlet conditions, provides 
V E, = 0 everywhere. 
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On the interleaved mesh, the resulting E, has no divergence down to the residual 
level of the solution of Eq. (29a). These decompositions take little time because we 
are inverting the simple Poisson operator and we start with the most recently 
available @-an excellent first guess. 

When a finite difference of a product of x and E, is required, the product is for- 
med prior to the difference operation. A discussion of the mesh representation 
required to ensure charge conservation is given below Eq. ( 11 f) and in Appendix A. 
The 4 terms are averaged prior to the field iteration so that CPU is known at the 
same mesh location as E,, for all directions p and v. The rationale for these i; 
location choices is that 5. E, represents a magnetization whose curl now can be 
expressed at the J locations shown in Fig. (2). 

In the present version of the code some of the off-diagonal x terms and all the c 
terms are placed on the right-hand side of the equations due to their storage 
locations on the interleaved mesh. Referring to Fig. (2) some off-diagonal x. 
terms are represented by averages of nearest neighbors. For the XPASS, for exam- 
ple, those terms one up or down in the index bc do not fit into the central band of 
the banded matrix solver and are moved to the right side of the equations. 

Convergence is checked by evaluating the L, norm of the change of each 
unknown on subsequent iterations: the square root of this norm for each com- 
ponent is then divided by the largest absolute value of that component to give a 
representative relative change as the iteration progresses. For example, the con- 
vergence value for the E,, component is given by 

These quantities sI then give a measure of the relative change each iteration for each 
component j. Successful convergence is achieved when the sum of the ab~~~~te 
values of all four E, is less than a specified tolerance. Typically we use a tolerance of 
1Qp3; a value generally achieved in l&l5 iterations. 

There are a variety of tricks that may be employed to speed convergence of most 
iterated splitting algorithms. Contrary to noniterative ADI, in which excess 
numerical dissipation must be avoided to preserve high frequencies, we seek here 
only a rapid solution of the elliptic system given by Eqs. (19), An advantage this 
provides is that we may use “diagonal stacking” for enhanced robustness of the 
iteration. “Diagonal stacking” refers to evaluating all contributions from the 
diagonal elements in second-order terms on the left-hand side of the equation rather 
than the symmetric separation that might be expected from a rigorous applicative 
of the AD1 method [26]. This technique provides increased diagonal dominance 
for the second-order terms [27]. We found the algorithm without diagonal stacking 
to be susceptible to iteration instability when subjected to large source-term trans- 
ients With diagonal stacking we find the algorithm to be very robust. 
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Acceleration parameters o [26], tantamount to including relaxation factors, are 
used to control the relative changes that each component is allowed during one 
iteration. Careful selection prevents counter-productive large oscillations in m of 
one weakly coupled component about a solution while another slowly evolves to 
the solution. These parameters are easily implemented in Eqs. (27) and (28). For 
example, in Eq. (27a) we add o,E, m+ 1/2 to the left-hand side and o,Ez to the right. 
We also have oy , o,, and co* parameters for the y, z, and @ equations as well. The 
reward for adding the extra complexity associated with these four new parameters 
is large. Convergence can easily be enhanced by factors of 2 or more. Fortunately, 
experience has shown that for the cases presented in this paper w, = oy = o, = 10.0 
and w, = 0.1 are nearly optimal. The magnitude is determined by the desire that 
the new term dominate the Laplacian contribution and the need to slow the rate of 
change of the E, components relative to the change of @ as the iteration progresses. 

The auxiliary storage needed for this splitting algorithm is reduced from the full 
sparse matrix of a direct solution method to a compact banded matrix operator 
which is inverted on each pass. The storage needed for these diagonals is 15 
(diagonals) x 4 (equations) x [max(NX, NY) + 21. In addition, we are now keeping 
5 full (NX+ 2) x (NY + 2) arrays as temporary work areas-we are not yet concer- 
ned about minimizing storage. For a 40 x 40 mesh, the total is 60 x 42 + 
5(42 x 42) = 11340 words. This storage requirement compares favorably with other 
elliptic algorithms which can require as many as 15 [4x (NX+ 2) x (NY+ 2)] 
work arrays for problems of this type. 

d. Boundary Conditions 

The desired boundary conditions must be built into the coefficients sent to the 
linear system solver. In general, we allow field values needed at each boundary 
point to be unknowns and define boundary value equations for each such that the 
boundary point and the nearest interior neighbor are coupled to the desired boun- 
dary condition. For example, 

alE,(j= 0, k + 4) + a,E,(j= 1, k-b 4) = a,(k + 4) (30) 

provides a Dirichlet condition on EJX,,,) for al = 1, a2 = 0, and, given a3( y), the 
desired boundary value as a function of y at X,,,,,. Other choices allow easy 
imposition of Neumann conditions and either conditions can be implemented for 
integer or half-integer mesh storage. (Periodic boundary conditions do not lit into 
this scheme. A separate linear system solver has been constructed to provide this 
capability.) 

A discussion of the implementation of incoming-outgoing wave boundary con- 
ditions as they are incorporated into an implicit code is given in Appendix B. 
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V. TEST CASES 

a. Electron Beam Filamentation 

The problem of beam filamentation is of interest to electron beam propagation 
studies and serves as a test problem for our code. We start with a charge-neutral 
plasma column of circular cross section. Two electron components, a low density 
“beam” and a higher density “target,” are initialized to counterstream through the 
massive ion column. The filamentation instability results from the low density beam 
particles merging to form current lilaments. These lilaments coalesce in regions that 
now exclude the target electron component in order to preserve charge neutrality. 

In Case 1, the disposition of beam electrons is shown in Fig. 3 after several 
growth times of the instability. Fig. 4 shows the target species distribution at the 
same time, showing that the target species electrons have been excluded from the 
regions that the beam filaments now occupy. In this case the fast beam electrons 
merge into only one filament. Figure 5 shows the x and y components of the 
magnetic field that develop around the beam filaments. Adopting rationalized CGS 
units for the test cases, the physical parameters for this test problem are 

“Beam” electrons “Target” electrons IOIlS 

Density 
L drift - 
~ihermai 

l/11 lo/l1 1. 
0.283 0.0283 0. 
0.0 0.01 0. 

5.0 
Beam electrons T = 75 wpe-’ 

FIG. 3. Cross section of the beam electron component in X-J’ space showing filamentation after 
several growth times of the instability (see text for parameters). 



140 HEWETT AND LANGDON 

5.0/ 
I 

Target electfons T = 75 wpe-’ 
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FIG. 4. Cross section of the target electron component in x-y space at the same time as Fig. 3. Note 
the target electron component is electrostatically excluded from the location of the beam electron 
filament. 
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FIG. 5. Vector plot of the x and y components of B in x-y space at the same time as Figs. 2 and 3. 
Even though the problem has no net current, the coalescing beam electrons generate a local B field 
about the filament. 
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where the velocities are normalized to c and rn,/r~, = 2000. Numerical parameters 
for the case presented in Figs. 3-5 are ape At = 2.5, Xma, = I’,,,= 5, and 18,000 
particles (6000 each for the three species) on x-): mesh with N,x NY =4O x 32 
points, respectively. Typical x’s are 3.1, and typical i’s *v 0.94. Those cells with non- 
zero density initially have roughly N, = 37 particles per cell for each species. The 
implicit stress factor xi, a measure of the implicit shielding of a single particle 
(discussed in Section VI), has the value of 0.17 and v,~ At/A, = 0.2. A,/iD is 12.5. 

This problem provides several opportunities to test our code. With the i~itia~Iy 
sharp boundaries we can evaluate the behavior of our algorithm as the plasma 
expands into low density regions. The nontrivial B strongly exercises the tensorial 
coupling between the components of E and CD. In addition we can run this case in 
the parameter regimes which vary the relative importance of the plasma versus 
vacuum terms. This issue reduces to a question of collisionless skin depth resolution 
since 

“vacuum terms”/‘“plasma terms” - $c’ dt’/Az,~ = (c/A,w~~)’ 

= (mesh points/skin depth)‘, (31) 

where A, = min(Ax, Ay). In this first case the skin depth is well resolved with 
cbpe A m = 8. Ten iterations are typically required for all the convergence tolerances 
to be reduced to < 10 -3 at each point. Total energy is conserved to better than 
0.3%. 

The preceding example shows the utility of the code with time steps an order of 
magnitude larger than explicit codes can use. The results, as we shall discuss later, 
are in reasonable agreement with a cold fluid theory and exhibit excellent energy 
conservation-one measure of code performance. 

Increasing both the problem size as well as mpe At for Case 2 puts the co 
quite different parameter regime. Setting wpe At to 25, giving typical x’s - 
&‘s - 94, allows more rapid convergence-generally less than 12 iterations for the 
convergence tolerance of 10m3. The larger problem size, X,,, = Y,,, = 300, with 
same number of mesh points no longer provides resolution of the skin depth on 
mesh-c/w,, A, = 0.13-but the algorithm still performs well. The number of par- 
ticles per cell drops slightly to NC = 24 and the implicit stress factor x1 is about 26. 
We have increased the temperature of the target component by a factor of 100 SG 
that u,~= 0.1; v,~ At/A,=O.33; A,/,4, is 75.0. 

In Fig. 6 we show the particle position space plot for this second case for com- 
parison with Fig. 3. For the same physics parameters, we now find the beam break- 
ing into many filaments--consistent with the larger problem size allowing several 
“most unstable wavelengths” to Iit within the plasma. For these extreme numerical 
parameters, our algorithm begins to show the strain of the large time step. Total 
energy is lost fairly quickly in this run-predominantly by the thermal target elec- 
tron component. In 30 time steps, 25% of the total energy is lost; roughly 4 an 
this loss is from the initial kinetic energy of the beam and target electrons, respec- 
tively. We expect large time steps will cause kinetic energy damping [ 10, 12, 15 & as 
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FIG. 6. Cross section of the beam component in x-y space analogous to Fig. 3 but with substantially 
different parameters (see text for Case 2 parameters). 

will excessive particle fluctuation noise. This problem also has a very large I,, here 
26.0, which we believe also plays a role in the energy loss. 

To gain an appreciation of the effect of statistical fluctuations, the above case was 
repeated with 10 times the number of particles. Generally, the results were “crisper” 
due to reduced noise levels but remained qualitatively the same. We denote this 
case with more particles as Case 3. The x1 is reduced to 2.6 now. Figure 7 shows a 
particle plot that corresponds to Fig. 6. Energy conservation was considerably bet- 
ter, however, in that only 16% of the total energy was lost-the beam and target 
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FIG. 7. Cross section of the beam component in x-y space analogous to Fig. 6 but with 10 times the 
number of particles (Case 3). 
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FIG 8. Cross section of the beam component in x-y space analogous to Fig. 7 bur with 
approximately twice the spatial resolution (Case 4). 

electron components accounting for roughly S and 4 of the loss, respectively. The 
loss of thermal energy from the target component is substantially improved by 
lower fluctuations. Next, still using the larger number of particles, we increased 6 
resolution of the mesh in Case 4 to 64 x 64 from 40 x 32; x1 is increased to about 
14.2 in this case. Figure 8 shows the corresponding particle positions and Fig. 9 
shows the magnetic field vectors in the simulation plane wrapping around each 
current filament. The greater resolution causes smaller filaments to form and, as we 

300. / r I 
Bx,” vectors T = 376 wee-’ 

-1 

FIG. 9. Vector plot of the x and y components of B in x-y space at the same time as Fig. 8. As in 
Fig. 5 no net current is carried by the system. The local B field wraps around each filament as before 
(Case 4). 

581/72/l-10 
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Tape-’ 

FIG. 10. Energy in all EM field components for the filamentation problems corresponding to Figs. 6, 
7, and 8-9. These test cases are intended to provide a measure of code performance with several 
numerical parameter choices. 

shall see, the initial growth rate for filamentation is also faster as the maximum 
allowable wavenumber increases. 

Figures (10) and (11) show the field energy gain and the total energy loss for 
Cases 2, 3, 4. We note that Case 3 conserves total energy best and has the lowest 
field energy at saturation. Case 2 differs from Case 3 only in the number of par- 
ticles/cell; Case 4 differs from Case 3 due to the increased spatial resolution 
-o,~ At/A, = 0.53 and A,,,/lD is about 46.9. The most significant parameter for 
comparison in these three large time-step cases is perhaps x1. While our code 
remains stable when extremely large time steps are used, this limited experience 
suggests that energy conservation is degraded when x1 becomes significantly greater 
than 1. We are presently conducting a more through investigation of the effects of 
these parameters on the direct implicit algorithm. 

Total energy vs. tune 

0 200 400 600 

T cape-’ 

FIG. 11. Total energy versus time for the runs shown in Fig. 10. 
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A straightforward linearized fluid treatment of the infinite homogeneous stream- 
ing problem yields the growth rate 

2 n,u2,k2 
Ge = n,(o&. + c2k2) 

where k is the characteristic wavenumber perpendicular to the beam and uB is the 
relative drift between the two electron components. Measuring the scale length of 
the filament in Case l-we take it to be 0.75 units-we find the analytic growth rate 
to be 0.088 compared with the measured 0.03 from simulation. The deviation is 
perhaps accounted for by the analytic assumption of infinite homogeneity in the 
perpendicular direction being obviously violated in the simulation. Further, the 
simple fluid theory is questionable for situations for which a thermal target particle 
travels more than a wavelength in a growth time; in this case we 
y/kv,, = 1.05-our theory is marginally valid. In the second case with the large 
step we take the scale length to be 15; the analytic growth rate is 0.0345 compare 
with the simulation result of 0.0037. Case 3 with large dt and 10 times the number 
of simulation particles has a growth rate of O.Ol-indicating that the noise level of 
the second run is large enough to disrupt collective behavior. Case 4 has more grid 
resolution and a smaller scale length which we take to be 7.5. The analytic growth 
rate is 0.018 and the simulation growth rate is 0.009-much better agreement. y/kvi, 
is 8.25 in this case so our fluid theory is a more appropriate guide. 

To get a more standard comparison of the computational effort e nded to 
achieve implicitness, we extrapolate our results for these plasma-vacu cases to 
the more familiar homogeneous plasma case. If we assume 15 particles of each of 
two species in every cell on this 40 x 32 mesh, our present code will use 60% of the 
effort in the field solve and 22% for the particle push. The extra 18% is overhead 
associated with plotting. Our present implicit particle pusher with 3’ (~noptimi~ed 
Fortran) takes roughly 50% longer than the standard (unoptimize 
explicit pusher due to the double advance (PRE and POSTPUSH). Since the field 
integration in explicit codes is generally negligible compared to the particle 
advance, the overhead of the implicit field solution increases our cornp~ta~~~~a~ 
effort by a factor of roughly 4 per time step over the exphcit method. The gain, of 
course, is that the time step for an explicit code (typically mpe dl= 0.2) can be easily 
increased by one to two orders of magnitude depending on the problem. 

The actual CPU time required for a field solution depends weakly upon the size 
of At. We find for this example with 40 x 32 mesh that the field solution takes about 
4 CPU s for mpe At = 2.5 and increases to 9 s as mpe At is increased an order of 
magnitude to 25.0. An obvious reason for the increased iteration is the poorer 
initial guess the old fields provide as the time step increases. Further analysis is dif- 
ficult and, in our judgment, is not warranted given the favorable scaling. 

A z-directed magnetic field was added to the second problem to check con- 
vergence with off-diagonal x’s and L,‘s comparable to the diagonals. The code 
remains stable and requires similar numbers of iterations. 
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b. Magnetic Reconnection 

As a second application we present early results in our study of the basic physics 
of magnetic reconnection in collisionless plasmas with AVANTI. Our purpose in 
presenting these results is that they provide evidence that the method works with 
nontrivial magnetic fields in a configuration which is initially in MHD pressure 
balance. The previous example, filamentation, exhibited rapid expansion by the 
electron component until confined by the electrostatic attraction of the heavy ions. 
The relatively long time scale of these reconnection runs provides another 
parameter extreme in which to evaluate the performance of our algorithm. 

For the initial state we start with a uniform ion charge density plon = 1 and with 
the 1D initial temperature profiles 

T= (Tm,, - T,,,))[Il - tanh”(ax2)1 + TmLn (331 

for both electrons and ions, we construct the electric field E, necessary to confine 
the ions 

E.x = h(PTmn)lPion (34) 

assuming the ions carry no current. Gauss’ law provides the electron density 
required to produce this electric held 

Pelect = --Pm” + ad% (35) 

and pressure balance 

a,CU$ - EZ3/8~ + Pew Tem/qe,ect + ~mn Tm/qionl = 0 (361 

gives the confining magnetic field. A curl of this magnetic field determines the 
current the electrons must carry. These initial profiles are shown in Fig. 12 for 
a = 0.7. 

Densities Temperatures 

Fields 

.:fsyq 

-10 -5 0 5 10 

x c/wp, x c/wp, 

FIG. 12. ID profiles of the initial configuration for magnetic reconnection studies. Shown are (a) the 
ion and electron densities, (b) ion and electron temperatures, (c) the confining fields and (d) the electron 
drift velocity. 
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FIG. 13 Time progression of magnetic reconnection. In the left column are vector plots of the 

in the plane of simulation showing the emergence of reconnection; m the right column are contours of 

the normal component of the magnetic vector potential or magnetic flux. Remembering that magnetic 
field vectors are everywhere tangent to these contours gives a clear view of the reconnection process. 
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As time progresses in the simulation the opposed magnetic field reconnect across 
the field null as shown in the vector plots of B and the associated contours of con- 
stant magnetic flux shown in Fig. 13. These simulations were run with dt = 5~;’ 
with a mass ratio of 200 and 40 x 32 cells. The representation is relatively coarse in 
this run; the plasma is represented by 9000 particles for each species-N, is 
approximately 7 particles per cell. The parameter x1, given by Eq. (37), is roughly 
3.5, Am/l, is 50.0, v,~ At/A, -0.1, and typical x and c are roughly 12.5 and 1.88. 

Although much work remains to be completed both in physics and diagnostic 
issues related to this problem, we are intrigued by the expanded parameter range 
that is accessible and are continuing our investigation of several new phenomena 
that have recently emerged in this problem. 

VI. CONSISTENCY VERSUS ROBUSTNESS 
AND NONLINEAR STABILITY 

The procedure described in Sections III.b-d and IV does not achieve the solution 
of the original equations in Section II precisely, and we argue here that it should 
not. Even if an exact solution of Eqs. (la)-(li) exists and could be found by some 
combination of strict differencing and iteration, the robustness of the code is 
improved by our procedure. Here we discuss a nonlinear instability, the reasons we 
wish to overcome it, the algorithm changes it motivates, and explain remarks made 
in Sections 1II.d-e and Appendix A. 

During the designing of this code, tests of several variants of the direct-implicit 
electrostatic algorithms [9] were made to help select those variants most suitable 
for extension to a two-dimensional, electromagnetic code [19]. The principal test 
problem, the expansion of a slab or a column into a vacuum, features initially sharp 
gradients and a large range of density. A nonlinear instability occurs when the 
parameter (rationalized CGS units) 

q2 At2 ---Z (ape AtI 
X1=2mlA4 2N, (37) 

substantially exceeds unity, where N, = y1 [AxI is the number of particles per cell and 
(Ax1 is the cell length, area, or volume. The second expression for x1 shows its 
importance. In many applications of two-dimensional explicit codes, N, k 10 is a 
satisfactory compromise with cost. If the nonlinear instability were not circum- 
vented, we should need more than (mpe At)2 particles per cell, which would be a 
severe limitation for a code intended to operate with large (up, At)2. 

Let us consider the meaning of xi: when x1 is large, the gradient of the electric 
field of even one particle is so large as to possibly violate the linearizations on 
which the field prediction is based. Without spatial smoothing the field gradient due 
to one particle is aE/ax 5 q/j Axj, so the “trapping frequency” limitation [4, 91 is 

(38) 
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(We chose not to include spatial smoothing, because the resulting loss of resolution 
may be too costly in two dimensions and because smoothing makes the field 
equation more expensive to solve.) The ratio (x, + r - Zn+ ,)/Lx, also a measure of 
the validity of linearization in the absence of smoothing, can be as large as 
&it2(q2/m)/ldxl =x1 due to the field of a single particle. These are worst-case 
indications of the validity of linearization in the field prediction, as stressed by 
short-wavelength sampling fluctuations in the charge density. 

If the implicit field solution and particle advance were an exact solution of 
Eqs. (la)-( li), including at sub-cell spatial scale lengths, then the field would be the 
same as obtained from the final particle charge (and current) density. The same 
remarks on the largeness of E and its gradient would apply. 

Our choice of differencing for the implicit field equation mitigates the large elec- 
tric field and its gradients that can arise for these isolated particles. More importan- 
tly, the acceleration obtained from the interpolated field can be ameliorated. To do 
so, it seems essential that a particle contribute enough to the (x1+ 1,2) rnulti~~~i~g 
all the (E,, 1,2) that accelerate the particle and its neighbors in the same cell, so 
that the accelerations do not become too large. For a cell containing one particle. 
the susceptibility x is approximately x1 and the electric field is reduced by about a 
factor 2. Although the single-particle interactions are artificially reduced, 
-x,+1 --Zn+ 1 is -Ax-quite large enough an impulse for one time step. The choices 
in Appendix A work well in the test problems considered here and in one dimension 
in [197. 

In cells containing many particles, the predicted field is smaller because x is con- 
tributed to by all the other particles. Indeed, we observed the nonlinear instability 
at vacuum boundaries, not inside the body of the plasma. 

VII. CONCLUDING DISCUSSION AND SUMMARY 

A 2D electromagnetic version of the direct implicit PIC algorithm has been 
developed and implemented. The new code AVANT1 fulfills most of the promises of 
implicit PIG. It runs stably with arbitrarily large time step and is quite robust witb 
respect to large fluctuations that result when plasmas are represented with small 
numbers of particles per cell. There are several new features required in the mul- 
tidimensional electromagnetic implementation not suggested by experience with 
either explicit codes or early direct implicit codes. Among the most important are 
the need for a sufficiently robust method of determining the implicit susceptibility 
so that the code can avoid a nonlinear instability found in the limit of few particles 
per cell and large time step. We find a combination of “simplified differencing” and 
averaging neighboring cells for the implicit susceptibility contribution provides a 
very robust algorithm without need for explicit smoothing. 

A harder problem that has been overcome is the solution of the EM field 
equations. In general, the elliptic equations for the electric field exhibit strong 
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coupling between components. In regions with finite density (assuming large time 
step), the terms with x coefficients dominate the equations and, in regions with 
significant magnetic fields, strongly couple the components of the electric field as a 
result of the tensor nature of x. This strong coupling suggests simultaneous 
solution. The 2D simultaneous solution is accomplished by simultaneous split- 
ting-a variant of ADI. In regions of low density, the dominant terms are those 
associated with electromagnetic waves in vacuum. The transition between the two 
regimes is expressed in numerical terms by whether the collisionless skin depth is or 
is not resolved on the mesh. When the skin depth is well resolved, the dominant 
terms do not fit conveniently into the simultaneous splitting scheme because they 
difference in a way that is not symmetric with respect to the splitting. The 
resolution of this difficulty is to decompose the electric field into electrostatic and 
inductive components so that the electrostatic part of E cancels analytically leaving 
a symmetric operator and an additional equation for @. We now have four elliptic 
equations to solve simultaneously-in principle no more difficult than solving the 
original three-component equation. 

Finally, extension and generalization of the conventional explicit PIG divergence 
correction step, necessary to maintain Gauss’ law, is needed. We find it necessary to 
use a more complex form for the correction factor, one that incorporates some of 
the implicit shielding that is used in the field equations. The implicit susceptibility x 
already contains the necessary information to prevent large implicit currents from 
moving across strong magnetic fields and across steep density gradients from 
vacuum regions. 

In the process of testing this code we have investigated two well-known plasma 
phenomena: particle beam lilamentation and magnetic reconnection. We have 
presented tests with large time steps and steep gradients as well as varying the mesh 
resolution and the numbers of particles per cell. The magnetic reconnection 
problem provides a longer time scale test with a finite zeroth-order B field-with 
some interesting new physics as a bonus. 

APPENDIX A: SPATIAL DIFFERENCING 

Mesh Representation of x ’ E 

In order to represent V. x. E in a charge-conservative manner, the x and y 
components of x. E are given at the same positions as E, and Ey (Fig. 2). Here we 
generalize the one-dimensional algorithm [9] examined in [19]. We begin with 
some general statements, then show the specific choices we made. The principles 
used here generalize to cylindrical coordinates (e.g., [17], Section 15-13). 

The term (x . EL,,, li2,k includes contributions from E, ,+ 1,2.k, the nearest four 
values of Ey, and the nearest two value of E,. With coefficients in most general 
form, it is 
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(X ’ EL., + 112.k = Xxx.J + 1/2,kEx.j+ 1/2,k 

+ ‘x 4 q.j+ 1/2,k\J.k+ 112 E y,J,k+ 112 

+ &,j+ 1/2,k\Ji l.k+ 1/2-&,J+ I.k+ 112 

+ b&J + 1/2,klJ.k - 112 E y.J,k - 112 

+ ‘x. 4 xy,J+ 1/2,k/J+ l,k 112 E y.Jf I.k- Ii2 

+ kzJ i 1/2,/c, J,,&.,.k + ‘x - 2 X--J+ 1/2,klj+ 1.k E z.,+ 1.k’ 

The characters \ and / indicate the directions of coupling in Fig. ‘2. Sim~~arly~ 
(x . E)p.J.k + 1,2 includes terms like 

X.v)..J.k i l/2 E.“,J,k + l/2 

Similarly, 

(X ’ E)z.,,k = X;;,J,k &/,k 

1 
+ SXzx.J,kir- l/?.,kEx.J- 112,ki~~zx,~,k~~+ 112.kEx.r+ 112,k 

+ &J,k 1J.k - l/2 E y,J.k - 1/2 +- hy,J,k 1J.k + l/2 Ey.J,k + 112’ iAS) 

In the current implementation this is done in the simplest way we know that 
provides the properties discussed in the next subsection: Components of x are first 
found at the p grid points, then averaged as needed, leading to 

(x . E).x,J+ 112.k = $CXx.x,J.k + xx.x,J+ I,kl E.y.J+ !/2.k 

+ hy.,.k[TEJ.,J,k+ i/2 + E,.J.k- l/d 

+ t&y,, + 1.k CE;.,J+l.k+1/2+Ei,Jf?.k~1,21 

+ h.J,k Ez.J.k + t&J + i.k Ez., + 1.k 

(x ’ E)z,J,k = Xx.j,k Ez.J.k 

+ bXz.x,J,k[E.x,J- 112.k + EY,J+ 1/2,k1 

+ ti!z~,,,k[E~,J.k- 1/2 +EJ./,ki l/21, 

Symmetry of x and Positivity of E ’ x . E 

From (86) and (9a) we see that x is a sum of positive multiples of diadics 
of the form i[I+R]= [I+@@--~xI]/(l+O’). Thus E.x.E cc E2f(6. 
everywhere nonnegative and all quantities are defined at the same positio 
the situation is cluttered by the varying positions at which quantities are 
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but we show now that our x is nonetheless a positive operator in the system of held 
equations. 

The integral of E. x. E over space becomes 

s E.X.Edx*dxdYC C( );+1,2,k+( &+1,2+( );,I. (‘46) 
J.k 

In order to indicate the role of boundary conditions without adding much com- 
plexity, we assume the system volume is the half-space x > 0. 

In the simpler “transverse magnetic” (TM) case, where only E,, E,, and B, are 
nonzero, we need use only (Al)-(A2) to show that (A6) is nonnegative if 

x.x.x J t l/2 k 3 ' > , (ATa) 

X."v,J,k + 112 2 ' (A7b) 

x.X&J+ 1/2,k\/,k + 112 + Xy.x./.k + 1/2\ J + 112.k = ' (-47~) 

xX.“,/+ II2,klJ.k - 112 + X."x,J,k- 1/2/J+ 1/2,k = O* (A7d) 

The first two conditions are almost automatically true since t(Z+ R) has positive 
diagonals. The last two conditions, which are reflections of the antisymmetry of x in 
the TM case, are trivially satisfied if both terms of (A7c) are found from any com- 
bination of xx.v,J,k and hxy,J+ 1,k + X.Y.v,J.k+ r ), etc. Certainly choices like (A4) satisfy 
these requirements. 

For the general held case the demonstration makes use of (A4) and (A5) from 
the start. After rearranging the sums, (A6) is proportional to 

[boundary terms] 

+ c c EJ,k ' &,k ' E,k 
J=I k 

+ c c $[x.w,,,k(Ex,,- 1/2,k - ‘?x.,+ 1,2,k)2 
J=l k 

(A8) 

where in the second line all components of E are defined at integer positions. as for 
the particle mover (Section 1V.a): 

E x,t.k = 2 LCEx,,+ 112.k + Ex.J- 1,2,kl 

E .v./,k = ICEy,J,k+ l/2 +Ey.j,k- 1/2I. 

The terms in the last sum of (A8) are nonnegative. Because the operator x,,~ is non- 
negative at each grid point, the positivity of the mesh representation is established, 
except for boundary terms. 
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Positivity of the Operator -V . x. V 

The positivity of this operator means that the integral of - $V .x V~!J is positive 
for all functions 6. Writing the integral as a sum, and rearranging the sum in a 
manipulation analogous to integration by parts, yields a sum like (An) with 
replaced by -V$, plus boundary terms. Thus the positivity of the operator in the 
interior reduces to the question of the positivity of x demonstrated above. 

In Cartesian coordinates with uniform mesh spacing, many cancellations take 
place in the cross terms. For example, 

(if ’ h&.,+ 112.k = Xx.x.,+ 112.k 
dj+ 1.k - d~,k + ix 

dx 2 Yj.1. 
k #,,,k + 1 - @J,k - 1 

2Ay 

+ fi&q i 1.k 
4 ~fl.k+l - Qi+e. 

26) CA91 

Dijjferencing of the Term V x <. E 

Preserving the property that the divergence of this term be zero requires only 
that the components of (5. E) and of B be defined at the same positions. Using < 
elements averaged as needed from integer grid positions, 

(6 EL,,k. l/2 = f (~rx,~-~~?,kEx,~-1~2.k+~r-r.j--~,’2,kf1Ex,~-~~/2,k~1 

+i S.Y.J f 1/2,k -&a,,+ 112.k + Crx,~+ 1,‘2.k+ iEx.I+ 1/2.k+ 1) 

-f-s .x.v,J,k + l/2 E y.1.k + l/2 

+ i(ixz,,,kEz.I.k + &,k+ lEz,,.ki 1) iAl 

(i.E) y., + l/7-,k = i.,.~,, + I,?-.kEx., i 112.k 

+a(i,,,,k~l/2E~,j.k-,/2+~?~..,+l.k~1!2~?.~+l.k-l~2 

+ i.,.v.,/i+ 1/2E~.~,ic+ 112 + i,,.,. l.k+ ICE,..,. i.k+ ~21 

+ %y:,~,kEz,,,k + ix./+ ~,k-&+ 1.k) (All) 

(4.E): .I+ i.:2,k+ 112 = 2 4x,/f 112.k 
‘(V E x., + mn- + ix, + 112.k + I -4, + C2.k + I) 

+ t(czy,,,k+ 1/2&.j.k+ ~2 + c- .y.,+l.k+1/2 ~..j+I,k+1,‘2) E 

+ i(izz,J,kEz,~.k + i:;,,+ l.k+ I ET.~-c l.k+ I 

+ ~ZZ.J+ I@,;.,+ l.k + iz;.,.k+ 1 &.,.k+ 1). iAI2) 

Another possibility for the i,, and [,,. terms is, e.g., 

(i ’ Ei.x.,,k+ 11’7 = &,,kb%,,- 1/2,x- + E,,,+ K2.k) 

+i r.~,J,k+1(E.~.,~i/2,k+l+Ex,,+1/2k+1)3 

+ i.q.,.k + 112 E,..,,k + i/2 

+ f(i.xr,J.k-%,,.k + i.q.k+ iEr./,k+ 11 (Al&l) 
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APPENDIX B: OUTGOING-WAVE BOUNDARY CONDITIONS 

It is frequently useful to have the capability to run with EM wave boundary con- 
ditions. If we wish to consider a TM wave incident on the simulated plasma from 
the region to the left of X,,,, for example, we need a relation to connect E, and B, 
at JL,, at the advanced time (because the field calculation is also implicit). The 
desired relation has the form E, = -(B, - Bzb) + B,,,, and is differenced as [23] 

~(E,,,=o,,+,+E,,,=o,,) 

= 40 + 112 - MB,, = 1/z,,, + 112 + B;, = 1/2,n+ l/2) - b,n + 1,21> (Bl) 

where B,,,= _ 1/2,n + l/2 > &.] = 112.,l + 1l2 2 and E,,, = O,n + 1 have not yet been determined. 
Brd(t) and Bzb(t) are the specified rf input and bias field level as functions of time, 
respectively. To use Eq. (Bl) as a boundary condition for the E field calculation 
Eq. (19), we need to eliminate these unknown B, quantities with expressions for 
known - quantities and earlier field quantities. Using Ampere’s law, Eq. (Id), to 
eliminate B,j= - 1,2,n + 1,2 and Faraday’s law, Eq. (le), to eliminate B,,,= 1,2.n+ 1,2 and 
assuming no plasma currents at X,,,, we have 

where v = c At/Ax. This relation is in the form of Eq. (30) that our algorithm 
requires. 
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